Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
92 tokens/sec
Gemini 2.5 Pro Premium
51 tokens/sec
GPT-5 Medium
32 tokens/sec
GPT-5 High Premium
25 tokens/sec
GPT-4o
103 tokens/sec
DeepSeek R1 via Azure Premium
64 tokens/sec
GPT OSS 120B via Groq Premium
469 tokens/sec
Kimi K2 via Groq Premium
227 tokens/sec
2000 character limit reached

Continual Rare-Class Recognition with Emerging Novel Subclasses (1906.12218v1)

Published 28 Jun 2019 in cs.LG and stat.ML

Abstract: Given a labeled dataset that contains a rare (or minority) class of of-interest instances, as well as a large class of instances that are not of interest, how can we learn to recognize future of-interest instances over a continuous stream? We introduce RaRecognize, which (i) estimates a general decision boundary between the rare and the majority class, (ii) learns to recognize individual rare subclasses that exist within the training data, as well as (iii) flags instances from previously unseen rare subclasses as newly emerging. The learner in (i) is general in the sense that by construction it is dissimilar to the specialized learners in (ii), thus distinguishes minority from the majority without overly tuning to what is seen in the training data. Thanks to this generality, RaRecognize ignores all future instances that it labels as majority and recognizes the recurrent as well as emerging rare subclasses only. This saves effort at test time as well as ensures that the model size grows moderately over time as it only maintains specialized minority learners. Through extensive experiments, we show that RaRecognize outperforms state-of-the art baselines on three real-world datasets that contain corporate-risk and disaster documents as rare classes.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.