Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lidar based Detection and Classification of Pedestrians and Vehicles Using Machine Learning Methods (1906.11899v1)

Published 12 Jun 2019 in cs.CV, cs.LG, cs.RO, eess.IV, and stat.ML

Abstract: The goal of this paper is to classify objects mapped by LiDAR sensor into different classes such as vehicles, pedestrians and bikers. Utilizing a LiDAR-based object detector and Neural Networks-based classifier, a novel real-time object detection is presented essentially with respect to aid self-driving vehicles in recognizing and classifying other objects encountered in the course of driving and proceed accordingly. We discuss our work using machine learning methods to tackle a common high-level problem found in machine learning applications for self-driving cars: the classification of pointcloud data obtained from a 3D LiDAR sensor.

Citations (1)

Summary

We haven't generated a summary for this paper yet.