Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Fair Representations for Kernel Models (1906.11813v2)

Published 27 Jun 2019 in cs.LG and stat.ML

Abstract: Fair representations are a powerful tool for establishing criteria like statistical parity, proxy non-discrimination, and equality of opportunity in learned models. Existing techniques for learning these representations are typically model-agnostic, as they preprocess the original data such that the output satisfies some fairness criterion, and can be used with arbitrary learning methods. In contrast, we demonstrate the promise of learning a model-aware fair representation, focusing on kernel-based models. We leverage the classical Sufficient Dimension Reduction (SDR) framework to construct representations as subspaces of the reproducing kernel Hilbert space (RKHS), whose member functions are guaranteed to satisfy fairness. Our method supports several fairness criteria, continuous and discrete data, and multiple protected attributes. We further show how to calibrate the accuracy tradeoff by characterizing it in terms of the principal angles between subspaces of the RKHS. Finally, we apply our approach to obtain the first Fair Gaussian Process (FGP) prior for fair Bayesian learning, and show that it is competitive with, and in some cases outperforms, state-of-the-art methods on real data.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Zilong Tan (6 papers)
  2. Samuel Yeom (7 papers)
  3. Matt Fredrikson (44 papers)
  4. Ameet Talwalkar (89 papers)
Citations (24)