Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Academic Plagiarism Detection for STEM Documents by Analyzing Mathematical Content and Citations (1906.11761v1)

Published 27 Jun 2019 in cs.DL and cs.IR

Abstract: Identifying academic plagiarism is a pressing task for educational and research institutions, publishers, and funding agencies. Current plagiarism detection systems reliably find instances of copied and moderately reworded text. However, reliably detecting concealed plagiarism, such as strong paraphrases, translations, and the reuse of nontextual content and ideas is an open research problem. In this paper, we extend our prior research on analyzing mathematical content and academic citations. Both are promising approaches for improving the detection of concealed academic plagiarism primarily in Science, Technology, Engineering and Mathematics (STEM). We make the following contributions: i) We present a two-stage detection process that combines similarity assessments of mathematical content, academic citations, and text. ii) We introduce new similarity measures that consider the order of mathematical features and outperform the measures in our prior research. iii) We compare the effectiveness of the math-based, citation-based, and text-based detection approaches using confirmed cases of academic plagiarism. iv) We demonstrate that the combined analysis of math-based and citation-based content features allows identifying potentially suspicious cases in a collection of 102K STEM documents. Overall, we show that analyzing the similarity of mathematical content and academic citations is a striking supplement for conventional text-based detection approaches for academic literature in the STEM disciplines.

Citations (27)

Summary

We haven't generated a summary for this paper yet.