Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reducing Popularity Bias in Recommendation Over Time (1906.11711v1)

Published 27 Jun 2019 in cs.IR

Abstract: Many recommendation algorithms suffer from popularity bias: a small number of popular items being recommended too frequently, while other items get insufficient exposure. Research in this area so far has concentrated on a one-shot representation of this bias, and on algorithms to improve the diversity of individual recommendation lists. In this work, we take a time-sensitive view of popularity bias, in which the algorithm assesses its long-tail coverage at regular intervals, and compensates in the present moment for omissions in the past. In particular, we present a temporal version of the well-known xQuAD diversification algorithm adapted for long-tail recommendation. Experimental results on two public datasets show that our method is more effective in terms of the long-tail coverage and accuracy tradeoff compared to some other existing approaches.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Himan Abdollahpouri (25 papers)
  2. Robin Burke (40 papers)
Citations (7)

Summary

We haven't generated a summary for this paper yet.