Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Uncertainty Estimates for Ordinal Embeddings (1906.11655v1)

Published 27 Jun 2019 in cs.LG and stat.ML

Abstract: To investigate objects without a describable notion of distance, one can gather ordinal information by asking triplet comparisons of the form "Is object $x$ closer to $y$ or is $x$ closer to $z$?" In order to learn from such data, the objects are typically embedded in a Euclidean space while satisfying as many triplet comparisons as possible. In this paper, we introduce empirical uncertainty estimates for standard embedding algorithms when few noisy triplets are available, using a bootstrap and a Bayesian approach. In particular, simulations show that these estimates are well calibrated and can serve to select embedding parameters or to quantify uncertainty in scientific applications.

Citations (6)

Summary

We haven't generated a summary for this paper yet.