Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adversarial Robustness via Label-Smoothing (1906.11567v2)

Published 27 Jun 2019 in cs.LG, cs.AI, and stat.ML

Abstract: We study Label-Smoothing as a means for improving adversarial robustness of supervised deep-learning models. After establishing a thorough and unified framework, we propose several variations to this general method: adversarial, Boltzmann and second-best Label-Smoothing methods, and we explain how to construct your own one. On various datasets (MNIST, CIFAR10, SVHN) and models (linear models, MLPs, LeNet, ResNet), we show that Label-Smoothing in general improves adversarial robustness against a variety of attacks (FGSM, BIM, DeepFool, Carlini-Wagner) by better taking account of the dataset geometry. The proposed Label-Smoothing methods have two main advantages: they can be implemented as a modified cross-entropy loss, thus do not require any modifications of the network architecture nor do they lead to increased training times, and they improve both standard and adversarial accuracy.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Morgane Goibert (5 papers)
  2. Elvis Dohmatob (35 papers)
Citations (16)

Summary

We haven't generated a summary for this paper yet.