Papers
Topics
Authors
Recent
2000 character limit reached

Total variation cutoff for the flip-transpose top with random shuffle

Published 27 Jun 2019 in math.PR | (1906.11544v3)

Abstract: We consider a random walk on the hyperoctahedral group $B_n$ generated by the signed permutations of the forms $(i,n)$ and $(-i,n)$ for $1\leq i\leq n$. We call this the flip-transpose top with random shuffle on $B_n$. We find the spectrum of the transition probability matrix for this shuffle. We prove that the mixing time for this shuffle is of order $n\log n$. We also show that this shuffle exhibits the cutoff phenomenon. In the appendix, we show that a similar random walk on the demihyperoctahedral group $D_n$ also has a cutoff at $\left(n-\frac{1}{2}\right)\log n$.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.