2000 character limit reached
(Theta, triangle)-free and (even hole, $K_4$)-free graphs. Part 1 : Layered wheels (1906.10998v5)
Published 26 Jun 2019 in cs.DM and math.CO
Abstract: We present a construction called layered wheel. Layered wheels are graphs of arbitrarily large treewidth and girth. They might be an outcome for a possible theorem characterizing graphs with large treewidth in terms of their induced subgraphs (while such a characterization is well-understood in terms of minors). They also provide examples of graphs of large treewidth and large rankwidth in well-studied classes, such as (theta, triangle)-free graphs and even-hole-free graphs with no $K_4$ (where a hole is a chordless cycle of length at least four, a theta is a graph made of three internally vertex disjoint paths of length at least two linking two vertices, and $K_4$ is the complete graph on four vertices).