Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Beneficial perturbation network for continual learning (1906.10528v1)

Published 22 Jun 2019 in cs.LG and cs.AI

Abstract: Sequential learning of multiple tasks in artificial neural networks using gradient descent leads to catastrophic forgetting, whereby previously learned knowledge is erased during learning of new, disjoint knowledge. Here, we propose a fundamentally new type of method - Beneficial Perturbation Network (BPN). We add task-dependent memory (biasing) units to allow the network to operate in different regimes for different tasks. We compute the most beneficial directions to train these units, in a manner inspired by recent work on adversarial examples. At test time, beneficial perturbations for a given task bias the network toward that task to overcome catastrophic forgetting. BPN is not only more parameter-efficient than network expansion methods, but also does not need to store any data from previous tasks, in contrast with episodic memory methods. Experiments on variants of the MNIST, CIFAR-10, CIFAR-100 datasets demonstrate strong performance of BPN when compared to the state-of-the-art.

Citations (2)

Summary

We haven't generated a summary for this paper yet.