Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Metric rectifiability of $\mathbb{H}$-regular surfaces with Hölder continuous horizontal normal (1906.10215v5)

Published 24 Jun 2019 in math.CA, math.DG, and math.MG

Abstract: Two definitions for the rectfiability of hypersurfaces in Heisenberg groups $\mathbb{H}n$ have been proposed: one based on $\mathbb{H}$-regular surfaces, and the other on Lipschitz images of subsets of codimension-$1$ vertical subgroups. The equivalence between these notions remains an open problem. Recent partial results are due to Cole-Pauls, Bigolin-Vittone, and Antonelli-Le Donne. This paper makes progress in one direction: the metric Lipschitz rectifiability of $\mathbb{H}$-regular surfaces. We prove that $\mathbb{H}$-regular surfaces in $\mathbb{H}{n}$ with $\alpha$-H\"older continuous horizontal normal, $\alpha > 0$, are metric bilipschitz rectifiable. This improves on the work by Antonelli-Le Donne, where the same conclusion was obtained for $C{\infty}$-surfaces. In $\mathbb{H}{1}$, we prove a slightly stronger result: every codimension-$1$ intrinsic Lipschitz graph with an $\epsilon$ of extra regularity in the vertical direction is metric bilipschitz rectifiable. All the proofs in the paper are based on a new general criterion for finding bilipschitz maps between "big pieces" of metric spaces.

Summary

We haven't generated a summary for this paper yet.