Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
12 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
37 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Improving the Effectiveness and Efficiency of Stochastic Neighbour Embedding with Isolation Kernel (1906.09744v3)

Published 24 Jun 2019 in cs.LG, cs.AI, cs.CV, and stat.ML

Abstract: This paper presents a new insight into improving the performance of Stochastic Neighbour Embedding (t-SNE) by using Isolation kernel instead of Gaussian kernel. Isolation kernel outperforms Gaussian kernel in two aspects. First, the use of Isolation kernel in t-SNE overcomes the drawback of misrepresenting some structures in the data, which often occurs when Gaussian kernel is applied in t-SNE. This is because Gaussian kernel determines each local bandwidth based on one local point only, while Isolation kernel is derived directly from the data based on space partitioning. Second, the use of Isolation kernel yields a more efficient similarity computation because data-dependent Isolation kernel has only one parameter that needs to be tuned. In contrast, the use of data-independent Gaussian kernel increases the computational cost by determining n bandwidths for a dataset of n points. As the root cause of these deficiencies in t-SNE is Gaussian kernel, we show that simply replacing Gaussian kernel with Isolation kernel in t-SNE significantly improves the quality of the final visualisation output (without creating misrepresented structures) and removes one key obstacle that prevents t-SNE from processing large datasets. Moreover, Isolation kernel enables t-SNE to deal with large-scale datasets in less runtime without trading off accuracy, unlike existing methods in speeding up t-SNE.

Citations (8)

Summary

We haven't generated a summary for this paper yet.