2000 character limit reached
Deep Residual Learning for Image Compression (1906.09731v1)
Published 24 Jun 2019 in eess.IV
Abstract: In this paper, we provide a detailed description on our approach designed for CVPR 2019 Workshop and Challenge on Learned Image Compression (CLIC). Our approach mainly consists of two proposals, i.e. deep residual learning for image compression and sub-pixel convolution as up-sampling operations. Experimental results have indicated that our approaches, Kattolab, Kattolabv2 and KattolabSSIM, achieve 0.972 in MS-SSIM at the rate constraint of 0.15bpp with moderate complexity during the validation phase.