Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Transfer Learning for Segmenting Dimensionally-Reduced Hyperspectral Images (1906.09631v1)

Published 23 Jun 2019 in cs.CV

Abstract: Deep learning has established the state of the art in multiple fields, including hyperspectral image analysis. However, training large-capacity learners to segment such imagery requires representative training sets. Acquiring such data is human-dependent and time-consuming, especially in Earth observation scenarios, where the hyperspectral data transfer is very costly and time-constrained. In this letter, we show how to effectively deal with a limited number and size of available hyperspectral ground-truth sets, and apply transfer learning for building deep feature extractors. Also, we exploit spectral dimensionality reduction to make our technique applicable over hyperspectral data acquired using different sensors, which may capture different numbers of hyperspectral bands. The experiments, performed over several benchmarks and backed up with statistical tests, indicated that our approach allows us to effectively train well-generalizing deep convolutional neural nets even using significantly reduced data.

Citations (22)

Summary

We haven't generated a summary for this paper yet.