Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

RLTM: An Efficient Neural IR Framework for Long Documents (1906.09404v2)

Published 22 Jun 2019 in cs.CL and cs.IR

Abstract: Deep neural networks have achieved significant improvements in information retrieval (IR). However, most existing models are computational costly and can not efficiently scale to long documents. This paper proposes a novel End-to-End neural ranking framework called Reinforced Long Text Matching (RLTM) which matches a query with long documents efficiently and effectively. The core idea behind the framework can be analogous to the human judgment process which firstly locates the relevance parts quickly from the whole document and then matches these parts with the query carefully to obtain the final label. Firstly, we select relevant sentences from the long documents by a coarse and efficient matching model. Secondly, we generate a relevance score by a more sophisticated matching model based on the sentence selected. The whole model is trained jointly with reinforcement learning in a pairwise manner by maximizing the expected score gaps between positive and negative examples. Experimental results demonstrate that RLTM has greatly improved the efficiency and effectiveness of the state-of-the-art models.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Chen Zheng (52 papers)
  2. Yu Sun (226 papers)
  3. Shengxian Wan (5 papers)
  4. Dianhai Yu (37 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.