Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A New Achievable Rate-Distortion Region for Distributed Source Coding (1906.08810v2)

Published 20 Jun 2019 in cs.IT and math.IT

Abstract: In this work, lossy distributed compression of pairs of correlated sources is considered. Conventionally, Shannon's random coding arguments -- using randomly generated unstructured codebooks whose blocklength is taken to be asymptotically large -- are used to derive achievability results. However, it was recently observed that in various multi-terminal communications scenarios, using random codes with constant finite blocklength may lead to improved achievable regions compared to the conventional approach. In other words, in some network communication scenarios, there is a finite optimal value in the blocklength of the randomly generated code used for distributed processing of information sources. Motivated by this, a coding scheme is proposed which consists of two codebook layers: i) the primary codebook which has constant finite blocklength, and ii) the secondary codebook whose blocklength is taken to be asymptotically large. The achievable region is analyzed in two steps. In the first step, a characterization of the achievable region is derived using information measures which are functions of multi-letter probability distributions. In the next step, a computable single-letter inner-bound to the achievable region is derived. It is shown through several examples that the resulting rate-distortion region is strictly larger than the Berger Tung achievable region.

Citations (4)

Summary

We haven't generated a summary for this paper yet.