Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hybrid Quantum/Classical Derivative Theory: Analytical Gradients and Excited-State Dynamics for the Multistate Contracted Variational Quantum Eigensolver (1906.08728v1)

Published 20 Jun 2019 in quant-ph

Abstract: The maturation of analytical derivative theory over the past few decades has enabled classical electronic structure theory to provide accurate and efficient predictions of a wide variety of observable properties. However, classical implementations of analytical derivative theory take advantage of explicit computational access to the approximate electronic wavefunctions in question, which is not possible for the emerging case of hybrid quantum/classical methods. Here, we develop an efficient Lagrangian-based approach for analytical first derivatives of hybrid quantum/classical methods using only observable quantities from the quantum portion of the algorithm. Specifically, we construct the key first-derivative property of the nuclear energy gradient for the recently-developed multistate, contracted variant of the variational quantum eigensolver (MC-VQE) within the context of the ab initio exciton model (AIEM). We show that a clean separation between the quantum and classical parts of the problem is enabled by the definition of an appropriate set of relaxed density matrices, and show how the wavefunction response equations in the quantum part of the algorithm (coupled-perturbed MC-VQE or CP-MC-VQE equations) are decoupled from the wavefunction response equations and and gradient perturbations in the classical part of the algorithm. We explore the magnitudes of the HeLLMann-Feynman and response contributions to the gradients in quantum circuit simulations of MC-VQE+AIEM and demonstrate a quantum circuit simulator implementation of adiabatic excited state dynamics with MC-VQE+AIEM.

Citations (26)

Summary

We haven't generated a summary for this paper yet.