Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adversarial Learning for Improved Onsets and Frames Music Transcription (1906.08512v1)

Published 20 Jun 2019 in cs.SD, cs.LG, eess.AS, and stat.ML

Abstract: Automatic music transcription is considered to be one of the hardest problems in music information retrieval, yet recent deep learning approaches have achieved substantial improvements on transcription performance. These approaches commonly employ supervised learning models that predict various time-frequency representations, by minimizing element-wise losses such as the cross entropy function. However, applying the loss in this manner assumes conditional independence of each label given the input, and thus cannot accurately express inter-label dependencies. To address this issue, we introduce an adversarial training scheme that operates directly on the time-frequency representations and makes the output distribution closer to the ground-truth. Through adversarial learning, we achieve a consistent improvement in both frame-level and note-level metrics over Onsets and Frames, a state-of-the-art music transcription model. Our results show that adversarial learning can significantly reduce the error rate while increasing the confidence of the model estimations. Our approach is generic and applicable to any transcription model based on multi-label predictions, which are very common in music signal analysis.

Citations (43)

Summary

We haven't generated a summary for this paper yet.