Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Online A-Optimal Design and Active Linear Regression (1906.08509v2)

Published 20 Jun 2019 in stat.ML, cs.LG, and math.OC

Abstract: We consider in this paper the problem of optimal experiment design where a decision maker can choose which points to sample to obtain an estimate $\hat{\beta}$ of the hidden parameter $\beta{\star}$ of an underlying linear model. The key challenge of this work lies in the heteroscedasticity assumption that we make, meaning that each covariate has a different and unknown variance. The goal of the decision maker is then to figure out on the fly the optimal way to allocate the total budget of $T$ samples between covariates, as sampling several times a specific one will reduce the variance of the estimated model around it (but at the cost of a possible higher variance elsewhere). By trying to minimize the $\ell2$-loss $\mathbb{E} [\lVert\hat{\beta}-\beta{\star}\rVert2]$ the decision maker is actually minimizing the trace of the covariance matrix of the problem, which corresponds then to online A-optimal design. Combining techniques from bandit and convex optimization we propose a new active sampling algorithm and we compare it with existing ones. We provide theoretical guarantees of this algorithm in different settings, including a $\mathcal{O}(T{-2})$ regret bound in the case where the covariates form a basis of the feature space, generalizing and improving existing results. Numerical experiments validate our theoretical findings.

Citations (2)

Summary

We haven't generated a summary for this paper yet.