Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ground state solution for a class of modified nonlinear fourth-order elliptic equation with sign-changing unbounded potential (1906.08390v1)

Published 19 Jun 2019 in math.AP

Abstract: We are concerned on the fourth-order elliptic equation \begin{equation}\tag{$P_\lambda$} \left{ \begin{array}[c]{ll} \Delta2 u- \Delta u + V(x)u -\lambda \Delta[\rho(u2)]\rho'(u2)u= f(u)\, \, \mbox{in} \, \, \mathbb{R}N, & u\in W{2,2}(\mathbb{R}N), \end{array} \right. \end{equation} where $\Delta2 = \Delta(\Delta)$ is the biharmonic operator, $3\leq N\leq 6$, the radially symmetric potential $V$ may change sign and $\inf_{\mathbb{R}N}V(x)=-\infty$ is allowed. If $f$ satisfies a type of nonquadracity and monotonicity conditions and $\rho$ is a suitable smooth function, we prove, via variational approach, the existence of a radially symmetric nontrivial ground state solution $u_\lambda$ for problem $(P_\lambda)$ for all $\lambda\geq 0$.

Summary

We haven't generated a summary for this paper yet.