Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Affine quermassintegrals of random polytopes (1906.08015v1)

Published 19 Jun 2019 in math.MG, math.FA, and math.PR

Abstract: A question related to some conjectures of Lutwak about the affine quermassintegrals of a convex body $K$ in ${\mathbb R}n$ asks whether for every convex body $K$ in ${\mathbb R}n$ and all $1\leqslant k\leqslant n$ $$\Phi_{[k]}(K):={\rm vol}n(K){-\frac{1}{n}}\left (\int{G_{n,k}}{\rm vol}k(P_F(K)){-n}\,d\nu{n,k}(F)\right ){-\frac{1}{kn}}\leqslant c\sqrt{n/k},$$ where $c>0$ is an absolute constant. We provide an affirmative answer for some broad classes of random polytopes. We also discuss upper bounds for $\Phi_{[k]}(K)$ when $K=B_1n$, the unit ball of $\ell_1n$, and explain how this special instance has implications for the case of a general unconditional convex body $K$.

Summary

We haven't generated a summary for this paper yet.