Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Global estimates in Sobolev spaces for homogeneous Hörmander sums of squares (1906.07835v1)

Published 18 Jun 2019 in math.AP

Abstract: Let $\mathcal{L}=\sum_{j=1}m X_j2$ be a H\"ormander sum of squares of vector fields in space $\mathbb{R}n$, where any $X_j$ is homogeneous of degree $1$ with respect to a family of non-isotropic dilations in space. In this paper we prove global estimates and regularity properties for $\mathcal{L}$ in the $X$-Sobolev spaces $W{k,p}_X(\mathbb{R}n)$, where $X = {X_1,\ldots,X_m}$. In our approach, we combine local results for general H\"ormander sums of squares, the homogeneity property of the $X_j$'s, plus a global lifting technique for homogeneous vector fields.

Summary

We haven't generated a summary for this paper yet.