Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Robustness of the Backdoor-based Watermarking in Deep Neural Networks (1906.07745v2)

Published 18 Jun 2019 in cs.LG, cs.CR, and stat.ML

Abstract: Obtaining the state of the art performance of deep learning models imposes a high cost to model generators, due to the tedious data preparation and the substantial processing requirements. To protect the model from unauthorized re-distribution, watermarking approaches have been introduced in the past couple of years. We investigate the robustness and reliability of state-of-the-art deep neural network watermarking schemes. We focus on backdoor-based watermarking and propose two -- a black-box and a white-box -- attacks that remove the watermark. Our black-box attack steals the model and removes the watermark with minimum requirements; it just relies on public unlabeled data and a black-box access to the classification label. It does not need classification confidences or access to the model's sensitive information such as the training data set, the trigger set or the model parameters. The white-box attack, proposes an efficient watermark removal when the parameters of the marked model are available; our white-box attack does not require access to the labeled data or the trigger set and improves the runtime of the black-box attack up to seventeen times. We as well prove the security inadequacy of the backdoor-based watermarking in keeping the watermark undetectable by proposing an attack that detects whether a model contains a watermark. Our attacks show that a recipient of a marked model can remove a backdoor-based watermark with significantly less effort than training a new model and some other techniques are needed to protect against re-distribution by a motivated attacker.

Citations (7)

Summary

We haven't generated a summary for this paper yet.