Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Escaping from saddle points on Riemannian manifolds (1906.07355v1)

Published 18 Jun 2019 in math.OC, cs.LG, and stat.ML

Abstract: We consider minimizing a nonconvex, smooth function $f$ on a Riemannian manifold $\mathcal{M}$. We show that a perturbed version of Riemannian gradient descent algorithm converges to a second-order stationary point (and hence is able to escape saddle points on the manifold). The rate of convergence depends as $1/\epsilon2$ on the accuracy $\epsilon$, which matches a rate known only for unconstrained smooth minimization. The convergence rate depends polylogarithmically on the manifold dimension $d$, hence is almost dimension-free. The rate also has a polynomial dependence on the parameters describing the curvature of the manifold and the smoothness of the function. While the unconstrained problem (Euclidean setting) is well-studied, our result is the first to prove such a rate for nonconvex, manifold-constrained problems.

Citations (68)

Summary

We haven't generated a summary for this paper yet.