Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Eye Gaze Metrics and Analysis of AOI for Indexing Working Memory towards Predicting ADHD (1906.07183v1)

Published 17 Jun 2019 in cs.HC, cs.LG, and stat.ML

Abstract: ADHD is being recognized as a diagnosis which persists into adulthood impacting economic, occupational, and educational outcomes. There is an increased need to accurately diagnose and recommend interventions for this population. One consideration is the development and implementation of reliable and valid outcome measures which reflect core diagnostic criteria. For example, adults with ADHD have reduced working memory capacity when compared to their peers (Michalek et al., 2014). A reduction in working memory capacity indicates attentional control deficits which align with many symptoms outlined on behavioral checklists used to diagnose ADHD. Using computational methods, such as eye tracking technology, to generate a relationship between ADHD and measures of working memory capacity would be useful to advancing our understanding and treatment of the diagnosis in adults. This chapter will outline a feasibility study in which eye tracking was used to measure eye gaze metrics during a working memory capacity task for adults with and without ADHD and machine learning algorithms were applied to generate a feature set unique to the ADHD diagnosis. The chapter will summarize the purpose, methods, results, and impact of this study.

Citations (4)

Summary

We haven't generated a summary for this paper yet.