Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Panoptic Image Annotation with a Collaborative Assistant (1906.06798v4)

Published 17 Jun 2019 in cs.CV

Abstract: This paper aims to reduce the time to annotate images for panoptic segmentation, which requires annotating segmentation masks and class labels for all object instances and stuff regions. We formulate our approach as a collaborative process between an annotator and an automated assistant who take turns to jointly annotate an image using a predefined pool of segments. Actions performed by the annotator serve as a strong contextual signal. The assistant intelligently reacts to this signal by annotating other parts of the image on its own, which reduces the amount of work required by the annotator. We perform thorough experiments on the COCO panoptic dataset, both in simulation and with human annotators. These demonstrate that our approach is significantly faster than the recent machine-assisted interface of [4], and 2.4x to 5x faster than manual polygon drawing. Finally, we show on ADE20k that our method can be used to efficiently annotate new datasets, bootstrapping from a very small amount of annotated data.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Jasper R. R. Uijlings (6 papers)
  2. Mykhaylo Andriluka (19 papers)
  3. Vittorio Ferrari (83 papers)
Citations (9)

Summary

We haven't generated a summary for this paper yet.