Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Part Generation and Assembly for Structure-aware Shape Synthesis (1906.06693v4)

Published 16 Jun 2019 in cs.CV

Abstract: Learning powerful deep generative models for 3D shape synthesis is largely hindered by the difficulty in ensuring plausibility encompassing correct topology and reasonable geometry. Indeed, learning the distribution of plausible 3D shapes seems a daunting task for the holistic approaches, given the significant topological variations of 3D objects even within the same category. Enlightened by the fact that 3D shape structure is characterized as part composition and placement, we propose to model 3D shape variations with a part-aware deep generative network, coined as PAGENet. The network is composed of an array of per-part VAE-GANs, generating semantic parts composing a complete shape, followed by a part assembly module that estimates a transformation for each part to correlate and assemble them into a plausible structure. Through delegating the learning of part composition and part placement into separate networks, the difficulty of modeling structural variations of 3D shapes is greatly reduced. We demonstrate through both qualitative and quantitative evaluations that PAGENet generates 3D shapes with plausible, diverse and detailed structure, and show two applications, i.e., semantic shape segmentation and part-based shape editing.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Jun Li (778 papers)
  2. Chengjie Niu (3 papers)
  3. Kai Xu (312 papers)
Citations (70)

Summary

We haven't generated a summary for this paper yet.