Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Randomized Computation of Continuous Data: Is Brownian Motion Computable? (1906.06684v1)

Published 16 Jun 2019 in math.NA, cs.LO, and cs.NA

Abstract: We consider randomized computation of continuous data in the sense of Computable Analysis. Our first contribution formally confirms that it is no loss of generality to take as sample space the Cantor space of infinite FAIR coin flips. This extends [Schr\"oder&Simpson'05] and [Hoyrup&Rojas'09] considering sequences of suitably and adaptively BIASED coins. Our second contribution is concerned with 1D Brownian Motion (aka Wiener Process), a probability distribution on the space of continuous functions f:[0,1]->R with f(0)=0 whose computability has been conjectured [Davie&Fouch\'e'13; arXiv:1409.4667,S6]. We establish that this (higher-type) random variable is computable iff some/every computable family of moduli of continuity (as ordinary random variables) has a computable probability distribution with respect to the Wiener Measure.

Summary

We haven't generated a summary for this paper yet.