Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the $x$--coordinates of Pell equations which are products of two: Lucas numbers, Pell numbers (1906.06330v2)

Published 13 Jun 2019 in math.NT

Abstract: Let $ {L_n}{n\ge 0} $ be the sequence of Lucas numbers given by $ L_0=2, ~ L_1=1 $ and $ L{n+2}=L_{n+1}+L_n $ for all $ n\ge 0 $. In the first paper, for an integer $d\geq 2$ which is square-free, we show that there is at most one value of the positive integer $x$ participating in the Pell equation $x{2}-dy{2}=\pm 1$ which is a product of two Lucas numbers, with a few exceptions that we completely characterize. Let $ {P_m}{m\ge 0} $ be the sequence of Pell numbers given by $ P_0=0, ~ P_1=1 $ and $ P{m+2}=2P_{m+1}+P_m $ for all $ m\ge 0 $. In the second paper, for an integer $d\geq 2$ which is square free, we show that there is at most one value of the positive integer $x$ participating in the Pell equation $x{2}-dy{2} =\pm 1$ which is a product of two Pell numbers.

Summary

We haven't generated a summary for this paper yet.