Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Know What You Don't Know: Modeling a Pragmatic Speaker that Refers to Objects of Unknown Categories (1906.05518v1)

Published 13 Jun 2019 in cs.CL

Abstract: Zero-shot learning in Language & Vision is the task of correctly labelling (or naming) objects of novel categories. Another strand of work in L&V aims at pragmatically informative rather than ``correct'' object descriptions, e.g. in reference games. We combine these lines of research and model zero-shot reference games, where a speaker needs to successfully refer to a novel object in an image. Inspired by models of "rational speech acts", we extend a neural generator to become a pragmatic speaker reasoning about uncertain object categories. As a result of this reasoning, the generator produces fewer nouns and names of distractor categories as compared to a literal speaker. We show that this conversational strategy for dealing with novel objects often improves communicative success, in terms of resolution accuracy of an automatic listener.

Citations (16)

Summary

We haven't generated a summary for this paper yet.