Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Near-Optimal Glimpse Sequences for Improved Hard Attention Neural Network Training (1906.05462v2)

Published 13 Jun 2019 in cs.LG and stat.ML

Abstract: Hard visual attention is a promising approach to reduce the computational burden of modern computer vision methodologies. Hard attention mechanisms are typically non-differentiable. They can be trained with reinforcement learning but the high-variance training this entails hinders more widespread application. We show how hard attention for image classification can be framed as a Bayesian optimal experimental design (BOED) problem. From this perspective, the optimal locations to attend to are those which provide the greatest expected reduction in the entropy of the classification distribution. We introduce methodology from the BOED literature to approximate this optimal behaviour, and use it to generate `near-optimal' sequences of attention locations. We then show how to use such sequences to partially supervise, and therefore speed up, the training of a hard attention mechanism. Although generating these sequences is computationally expensive, they can be reused by any other networks later trained on the same task.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. William Harvey (15 papers)
  2. Michael Teng (5 papers)
  3. Frank Wood (98 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.