Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast, reliable and unrestricted iterative computation of Gauss--Hermite and Gauss--Laguerre quadratures (1906.05414v1)

Published 12 Jun 2019 in math.NA, cs.NA, and math.CA

Abstract: Methods for the computation of classical Gaussian quadrature rules are described which are effective both for small and large degree. These methods are reliable because the iterative computation of the nodes has guaranteed convergence, and they are fast due to their fourth-order convergence and its asymptotic exactness for an appropriate selection of the variables. For Gauss--Hermite and Gauss--Laguerre quadratures, local Taylor series can be used for computing efficiently the orthogonal polynomials involved, with exact initial values for the Hermite case and first values computed with a continued fraction for the Laguerre case. The resulting algorithms have almost unrestricted validity with respect to the parameters. Full relative precision is reached for the Hermite nodes, without any accuracy loss and for any degree, and a mild accuracy loss occurs for the Hermite and Laguerre weights as well as for the Laguerre nodes. These fast methods are exclusively based on convergent processes, which, together with the high order of convergence of the underlying iterative method, makes them particularly useful for high accuracy computations. We show examples of very high accuracy computations (of up to $1000$ digits of accuracy).

Citations (15)

Summary

We haven't generated a summary for this paper yet.