Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Markov-modulated continuous-time Markov chains to identify site- and branch-specific evolutionary variation (1906.05136v1)

Published 12 Jun 2019 in q-bio.PE and stat.ME

Abstract: Markov models of character substitution on phylogenies form the foundation of phylogenetic inference frameworks. Early models made the simplifying assumption that the substitution process is homogeneous over time and across sites in the molecular sequence alignment. While standard practice adopts extensions that accommodate heterogeneity of substitution rates across sites, heterogeneity in the process over time in a site-specific manner remains frequently overlooked. This is problematic, as evolutionary processes that act at the molecular level are highly variable, subjecting different sites to different selective constraints over time, impacting their substitution behaviour. We propose incorporating time variability through Markov-modulated models (MMMs) that allow the substitution process (including relative character exchange rates as well as the overall substitution rate) that models the evolution at an individual site to vary across lineages. We implement a general MMM framework in BEAST, a popular Bayesian phylogenetic inference software package, allowing researchers to compose a wide range of MMMs through flexible XML specification. Using examples from bacterial, viral and plastid genome evolution, we show that MMMs impact phylogenetic tree estimation and can substantially improve model fit compared to standard substitution models. Through simulations, we show that marginal likelihood estimation accurately identifies the generative model and does not systematically prefer the more parameter-rich MMMs. In order to mitigate the increased computational demands associated with MMMs, our implementation exploits recently developed updates to BEAGLE, a high-performance computational library for phylogenetic inference.

Summary

We haven't generated a summary for this paper yet.