Papers
Topics
Authors
Recent
Search
2000 character limit reached

Optimizing city-scale traffic through modeling observations of vehicle movements

Published 12 Jun 2019 in cs.SI and physics.soc-ph | (1906.05093v2)

Abstract: The capability of traffic-information systems to sense the movement of millions of users and offer trip plans through mobile phones has enabled a new way of optimizing city traffic dynamics, turning transportation big data into insights and actions in a closed-loop and evaluating this approach in the real world. Existing research has applied dynamic Bayesian networks and deep neural networks to make traffic predictions from floating car data, utilized dynamic programming and simulation approaches to identify how people normally travel with dynamic traffic assignment for policy research, and introduced Markov decision processes and reinforcement learning to optimally control traffic signals. However, none of these works utilized floating car data to suggest departure times and route choices in order to optimize city traffic dynamics. In this paper, we present a study showing that floating car data can lead to lower average trip time, higher on-time arrival ratio, and higher Charypar-Nagel score compared with how people normally travel. The study is based on optimizing a partially observable discrete-time decision process and is evaluated in one synthesized scenario, one partly synthesized scenario, and three real-world scenarios. This study points to the potential of a "living lab" approach where we learn, predict, and optimize behaviors in the real world.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.