Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Bayesian Approach to In-Game Win Probability in Soccer (1906.05029v2)

Published 12 Jun 2019 in cs.LG and stat.ML

Abstract: In-game win probability models, which provide a sports team's likelihood of winning at each point in a game based on historical observations, are becoming increasingly popular. In baseball, basketball and American football, they have become important tools to enhance fan experience, to evaluate in-game decision-making, and to inform coaching decisions. While equally relevant in soccer, the adoption of these models is held back by technical challenges arising from the low-scoring nature of the sport. In this paper, we introduce an in-game win probability model for soccer that addresses the shortcomings of existing models. First, we demonstrate that in-game win probability models for other sports struggle to provide accurate estimates for soccer, especially towards the end of a game. Second, we introduce a novel Bayesian statistical framework that estimates running win, tie and loss probabilities by leveraging a set of contextual game state features. An empirical evaluation on eight seasons of data for the top-five soccer leagues demonstrates that our framework provides well-calibrated probabilities. Furthermore, two use cases show its ability to enhance fan experience and to evaluate performance in crucial game situations.

Citations (17)

Summary

We haven't generated a summary for this paper yet.