Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Estimating Homogeneous Data-driven BRDF Parameters from a Reflectance Map under Known Natural Lighting (1906.04777v1)

Published 11 Jun 2019 in cs.GR

Abstract: In this paper we demonstrate robust estimation of the model parameters of a fully-linear data-driven BRDF model from a reflectance map under known natural lighting. To regularize the estimation of the model parameters, we leverage the reflectance similarities within a material class. We approximate the space of homogeneous BRDFs using a Gaussian mixture model, and assign a material class to each Gaussian in the mixture model. We formulate the estimation of the model parameters as a non-linear maximum a-posteriori optimization, and introduce a linear approximation that estimates a solution per material class from which the best solution is selected. We demonstrate the efficacy and robustness of our method using the MERL BRDF database under a variety of natural lighting conditions, and we provide a proof-of-concept real-world experiment.

Citations (1)

Summary

We haven't generated a summary for this paper yet.