Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bias-Aware Inference in Fuzzy Regression Discontinuity Designs (1906.04631v4)

Published 11 Jun 2019 in econ.EM and stat.ME

Abstract: We propose new confidence sets (CSs) for the regression discontinuity parameter in fuzzy designs. Our CSs are based on local linear regression, and are bias-aware, in the sense that they take possible bias explicitly into account. Their construction shares similarities with that of Anderson-Rubin CSs in exactly identified instrumental variable models, and thereby avoids issues with "delta method" approximations that underlie most commonly used existing inference methods for fuzzy regression discontinuity analysis. Our CSs are asymptotically equivalent to existing procedures in canonical settings with strong identification and a continuous running variable. However, due to their particular construction they are also valid under a wide range of empirically relevant conditions in which existing methods can fail, such as setups with discrete running variables, donut designs, and weak identification.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub

X Twitter Logo Streamline Icon: https://streamlinehq.com