Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Synthesis of Computable Regular Functions of Infinite Words (1906.04199v6)

Published 15 May 2019 in cs.FL and cs.LO

Abstract: Regular functions from infinite words to infinite words can be equivalently specified by MSO-transducers, streaming $\omega$-string transducers as well as deterministic two-way transducers with look-ahead. In their one-way restriction, the latter transducers define the class of rational functions. Even though regular functions are robustly characterised by several finite-state devices, even the subclass of rational functions may contain functions which are not computable (by a Turing machine with infinite input). This paper proposes a decision procedure for the following synthesis problem: given a regular function $f$ (equivalently specified by one of the aforementioned transducer model), is $f$ computable and if it is, synthesize a Turing machine computing it. For regular functions, we show that computability is equivalent to continuity, and therefore the problem boils down to deciding continuity. We establish a generic characterisation of continuity for functions preserving regular languages under inverse image (such as regular functions). We exploit this characterisation to show the decidability of continuity (and hence computability) of rational and regular functions. For rational functions, we show that this can be done in $\mathsf{NLogSpace}$ (it was already known to be in $\mathsf{PTime}$ by Prieur). In a similar fashion, we also effectively characterise uniform continuity of regular functions, and relate it to the notion of uniform computability, which offers stronger efficiency guarantees.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. V. Dave (1 paper)
  2. E. Filiot (1 paper)
  3. S. Krishna (25 papers)
  4. N. Lhote (1 paper)
Citations (6)

Summary

We haven't generated a summary for this paper yet.