Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian experimental design using regularized determinantal point processes (1906.04133v1)

Published 10 Jun 2019 in cs.LG and stat.ML

Abstract: In experimental design, we are given $n$ vectors in $d$ dimensions, and our goal is to select $k\ll n$ of them to perform expensive measurements, e.g., to obtain labels/responses, for a linear regression task. Many statistical criteria have been proposed for choosing the optimal design, with popular choices including A- and D-optimality. If prior knowledge is given, typically in the form of a $d\times d$ precision matrix $\mathbf A$, then all of the criteria can be extended to incorporate that information via a Bayesian framework. In this paper, we demonstrate a new fundamental connection between Bayesian experimental design and determinantal point processes, the latter being widely used for sampling diverse subsets of data. We use this connection to develop new efficient algorithms for finding $(1+\epsilon)$-approximations of optimal designs under four optimality criteria: A, C, D and V. Our algorithms can achieve this when the desired subset size $k$ is $\Omega(\frac{d_{\mathbf A}}{\epsilon} + \frac{\log 1/\epsilon}{\epsilon2})$, where $d_{\mathbf A}\leq d$ is the $\mathbf A$-effective dimension, which can often be much smaller than $d$. Our results offer direct improvements over a number of prior works, for both Bayesian and classical experimental design, in terms of algorithm efficiency, approximation quality, and range of applicable criteria.

Citations (24)

Summary

We haven't generated a summary for this paper yet.