Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Finding a Shortest Non-zero Path in Group-Labeled Graphs (1906.04062v6)

Published 10 Jun 2019 in cs.DS and math.CO

Abstract: We study a constrained shortest path problem in group-labeled graphs with nonnegative edge length, called the shortest non-zero path problem. Depending on the group in question, this problem includes two types of tractable variants in undirected graphs: one is the parity-constrained shortest path/cycle problem, and the other is computing a shortest noncontractible cycle in surface-embedded graphs. For the shortest non-zero path problem with respect to finite abelian groups, Kobayashi and Toyooka (2017) proposed a randomized, pseudopolynomial-time algorithm via permanent computation. For a slightly more general class of groups, Yamaguchi (2016) showed a reduction of the problem to the weighted linear matroid parity problem. In particular, some cases are solved in strongly polynomial time via the reduction with the aid of a deterministic, polynomial-time algorithm for the weighted linear matroid parity problem developed by Iwata and Kobayashi (2021), which generalizes a well-known fact that the parity-constrained shortest path problem is solved via weighted matching. In this paper, as the first general solution independent of the group, we present a rather simple, deterministic, and strongly polynomial-time algorithm for the shortest non-zero path problem. The algorithm is based on Dijkstra's algorithm for the unconstrained shortest path problem and Edmonds' blossom shrinking technique in matching algorithms; this approach is inspired by Derigs' faster algorithm (1985) for the parity-constrained shortest path problem via a reduction to weighted matching. Furthermore, we improve our algorithm so that it does not require explicit blossom shrinking, and make the computational time match Derigs' one. In the speeding-up step, a dual linear programming formulation of the equivalent problem based on potential maximization for the unconstrained shortest path problem plays a key role.

Citations (4)

Summary

We haven't generated a summary for this paper yet.