Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generation of Multimodal Justification Using Visual Word Constraint Model for Explainable Computer-Aided Diagnosis (1906.03922v1)

Published 10 Jun 2019 in cs.CV

Abstract: The ambiguity of the decision-making process has been pointed out as the main obstacle to applying the deep learning-based method in a practical way in spite of its outstanding performance. Interpretability could guarantee the confidence of deep learning system, therefore it is particularly important in the medical field. In this study, a novel deep network is proposed to explain the diagnostic decision with visual pointing map and diagnostic sentence justifying result simultaneously. For the purpose of increasing the accuracy of sentence generation, a visual word constraint model is devised in training justification generator. To verify the proposed method, comparative experiments were conducted on the problem of the diagnosis of breast masses. Experimental results demonstrated that the proposed deep network could explain diagnosis more accurately with various textual justifications.

Citations (43)

Summary

We haven't generated a summary for this paper yet.