Thermographic Laplacian-pyramid filtering to enhance delamination detection in concrete structure (1906.03721v1)
Abstract: Despite decades of efforts using thermography to detect delamination in concrete decks, challenges still exist in removing environmental noise from thermal images. The performance of conventional temperature-contrast approaches can be significantly limited by environment-induced non-uniform temperature distribution across imaging spaces. Time-series based methodologies were found robust to spatial temperature non-uniformity but require the extended period to collect data. A new empirical image filtering method is introduced in this paper to enhance the delamination detection using blob detection method that originated from computer vision. The proposed method employs a Laplacian of Gaussian filter to achieve multi-scale detection of abnormal thermal patterns by delaminated areas. Results were compared with the state-of-the-art methods and benchmarked with time-series methods in the case of handling the non-uniform heat distribution issue. To further evaluate the performance of the method numerical simulations using transient heat transfer models were used to generate the 'theoretical' noise-free thermal images for comparison. Significant performance improvement was found compared to the conventional methods in both indoor and outdoor tests. This methodology proved to be capable to detect multi-size delamination using a single thermal image. It is robust to the non-uniform temperature distribution. The limitations were discussed to refine the applicability of the proposed procedure.