Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Question Answering as Global Reasoning over Semantic Abstractions (1906.03672v1)

Published 9 Jun 2019 in cs.CL and cs.AI

Abstract: We propose a novel method for exploiting the semantic structure of text to answer multiple-choice questions. The approach is especially suitable for domains that require reasoning over a diverse set of linguistic constructs but have limited training data. To address these challenges, we present the first system, to the best of our knowledge, that reasons over a wide range of semantic abstractions of the text, which are derived using off-the-shelf, general-purpose, pre-trained natural language modules such as semantic role labelers, coreference resolvers, and dependency parsers. Representing multiple abstractions as a family of graphs, we translate question answering (QA) into a search for an optimal subgraph that satisfies certain global and local properties. This formulation generalizes several prior structured QA systems. Our system, SEMANTICILP, demonstrates strong performance on two domains simultaneously. In particular, on a collection of challenging science QA datasets, it outperforms various state-of-the-art approaches, including neural models, broad coverage information retrieval, and specialized techniques using structured knowledge bases, by 2%-6%.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Daniel Khashabi (83 papers)
  2. Tushar Khot (53 papers)
  3. Ashish Sabharwal (84 papers)
  4. Dan Roth (222 papers)
Citations (81)

Summary

We haven't generated a summary for this paper yet.