Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

S^1-equivariant contact homology for hypertight contact forms (1906.03457v3)

Published 8 Jun 2019 in math.SG

Abstract: In a previous paper, we showed that the original definition of cylindrical contact homology, with rational coefficients, is valid on a closed three-manifold with a dynamically convex contact form. However we did not show that this cylindrical contact homology is an invariant of the contact structure. In the present paper, we define "nonequivariant contact homology" and "S1-equivariant contact homology", both with integer coefficients, for a contact form on a closed manifold in any dimension with no contractible Reeb orbits. We prove that these contact homologies depend only on the contact structure. Our construction uses Morse-Bott theory and is related to the positive S1-equivariant symplectic homology of Bourgeois-Oancea. However, instead of working with Hamiltonian Floer homology, we work directly in contact geometry, using families of almost complex structures. When cylindrical contact homology can also be defined, it agrees with the tensor product of the S1-equivariant contact homology with Q. We also present examples showing that the S1-equivariant contact homology contains interesting torsion information. In a subsequent paper we will use obstruction bundle gluing to extend the above story to closed three-manifolds with dynamically convex contact forms, which in particular will prove that their cylindrical contact homology has a lift to integer coefficients which depends only on the contact structure.

Summary

We haven't generated a summary for this paper yet.