Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Evolving Losses for Unlabeled Video Representation Learning (1906.03248v1)

Published 7 Jun 2019 in cs.CV

Abstract: We present a new method to learn video representations from unlabeled data. Given large-scale unlabeled video data, the objective is to benefit from such data by learning a generic and transferable representation space that can be directly used for a new task such as zero/few-shot learning. We formulate our unsupervised representation learning as a multi-modal, multi-task learning problem, where the representations are also shared across different modalities via distillation. Further, we also introduce the concept of finding a better loss function to train such multi-task multi-modal representation space using an evolutionary algorithm; our method automatically searches over different combinations of loss functions capturing multiple (self-supervised) tasks and modalities. Our formulation allows for the distillation of audio, optical flow and temporal information into a single, RGB-based convolutional neural network. We also compare the effects of using additional unlabeled video data and evaluate our representation learning on standard public video datasets.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. AJ Piergiovanni (40 papers)
  2. Anelia Angelova (61 papers)
  3. Michael S. Ryoo (75 papers)
Citations (7)

Summary

We haven't generated a summary for this paper yet.