Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Local and global well-posedness for a quadratic Schrödinger system on spheres and Zoll manifolds (1906.03245v2)

Published 7 Jun 2019 in math.AP

Abstract: We consider the initial value problem (IVP) associated to a quadratic Schr\"odinger system \begin{equation*} \begin{cases} i \partial_{t} v \pm \Delta_{g} v - v = \epsilon_{1} u \bar{v}, & t \in \mathbb{R},\; x \in M, \[2ex] i \sigma \partial_{t} u \pm \Delta_{g} u - \alpha u = \frac{\epsilon_{2}}{2} v{2}, & \sigma > 0, \;\alpha \in \mathbb{R},\; \epsilon_{i} \in \mathbb{C}\, (i = 1, 2),\2ex = (v_0, u_0), \end{cases} \end{equation*} posed on a $d$-dimensional sphere $ \mathbb{S}{d}$ or a compact Zoll manifold $M$. Considering $\sigma=\frac{\theta}{\beta}$ with $\theta, \beta\in {n2:n\in\mathbb{Z}}$ we derive a bilinear Strichartz type estimate and use it to prove the local well-posedness results for given data $(v_0, u_0)\in Hs(M)\times Hs(M)$ whenever $s>\frac{1}{4}$ in the case $M = \mathbb{S}{2}$ or a Zoll manifold, and $s > \frac{d - 2}{2}$ in the case $M = \mathbb{S}{d}$ ($d \geq 3$) induced with the canonical metric. Moreover, in dimensions $2$ and $3$, we use a Gagliardo-Nirenberg type inequality to prove that the local solution can be extended globally in time whenever $s \geq 1$.

Summary

We haven't generated a summary for this paper yet.