Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Battling Antibiotic Resistance: Can Machine Learning Improve Prescribing? (1906.03044v1)

Published 5 Jun 2019 in econ.GN, cs.CY, cs.LG, q-fin.EC, and stat.ME

Abstract: Antibiotic resistance constitutes a major health threat. Predicting bacterial causes of infections is key to reducing antibiotic misuse, a leading driver of antibiotic resistance. We train a machine learning algorithm on administrative and microbiological laboratory data from Denmark to predict diagnostic test outcomes for urinary tract infections. Based on predictions, we develop policies to improve prescribing in primary care, highlighting the relevance of physician expertise and policy implementation when patient distributions vary over time. The proposed policies delay antibiotic prescriptions for some patients until test results are known and give them instantly to others. We find that machine learning can reduce antibiotic use by 7.42 percent without reducing the number of treated bacterial infections. As Denmark is one of the most conservative countries in terms of antibiotic use, this result is likely to be a lower bound of what can be achieved elsewhere.

Citations (11)

Summary

We haven't generated a summary for this paper yet.