Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

One-Shot Neural Architecture Search via Compressive Sensing (1906.02869v2)

Published 7 Jun 2019 in cs.LG and stat.ML

Abstract: Neural Architecture Search remains a very challenging meta-learning problem. Several recent techniques based on parameter-sharing idea have focused on reducing the NAS running time by leveraging proxy models, leading to architectures with competitive performance compared to those with hand-crafted designs. In this paper, we propose an iterative technique for NAS, inspired by algorithms for learning low-degree sparse Boolean functions. We validate our approach on the DARTs search space (Liu et al., 2018b) and NAS-Bench-201 (Yang et al., 2020). In addition, we provide theoretical analysis via upper bounds on the number of validation error measurements needed for reliable learning, and include ablation studies to further in-depth understanding of our technique.

Citations (17)

Summary

We haven't generated a summary for this paper yet.