The Navier--Stokes equations in exterior Lipschitz domains: $\mathrm{L}^p$-theory (1906.02713v1)
Abstract: We show that the Stokes operator defined on $\mathrm{L}p_{\sigma} (\Omega)$ for an exterior Lipschitz domain $\Omega \subset \mathbb{R}n$ $(n \geq 3)$ admits maximal regularity provided that $p$ satisfies $| 1/p - 1/2| < 1/(2n) + \varepsilon$ for some $\varepsilon > 0$. In particular, we prove that the negative of the Stokes operator generates a bounded analytic semigroup on $\mathrm{L}p_\sigma (\Omega)$ for such $p$. In addition, $\mathrm{L}p$-$\mathrm{L}q$-mapping properties of the Stokes semigroup and its gradient with optimal decay estimates are obtained. This enables us to prove the existence of mild solutions to the Navier--Stokes equations in the critical space $\mathrm{L}{\infty} (0 , T ; \mathrm{L}3_{\sigma} (\Omega))$ (locally in time and globally in time for small initial data).