Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Passive Multi-Target Tracking Using the Adaptive Birth Intensity PHD Filter (1906.02396v1)

Published 6 Jun 2019 in eess.SY and cs.SY

Abstract: Passive multi-target tracking applications require the integration of multiple spatially distributed sensor measurements to distinguish true tracks from ghost tracks. A popular multi-target tracking approach for these applications is the particle filter implementation of Mahler's probability hypothesis density (PHD) filter, which jointly updates the union of all target state space estimates without requiring computationally complex measurement-to-track data association. Although this technique is attractive for implementation in computationally limited platforms, the performance benefits can be significantly overshadowed by inefficient sampling of the target birth particles over the region of interest. We propose a multi-sensor extension of the adaptive birth intensity PHD filter described in (Ristic, 2012) to achieve efficient birth particle sampling driven by online sensor measurements from multiple sensors. The proposed approach is demonstrated using distributed time-difference-of-arrival (TDOA) and frequency-difference-of-arrival (FDOA) measurements, in which we describe exact techniques for sampling from the target state space conditioned on the observations. Numerical results are presented that demonstrate the increased particle density efficiency of the proposed approach over a uniform birth particle sampler.

Citations (5)

Summary

We haven't generated a summary for this paper yet.